DESIGN OF GEOGRID FOR PILED EMBANKMENT TO BS8006

WORK INSTRUCTIONS FOR ENGINEERS

OP-018. DESIGN OF GEOGRID FOR PILED EMBANKMENT TO BS8006

G&P GEOTECHNICS SDN BHD

DESIGN OF GEOGRID FOR PILED EMBANKMENT TO BS8006

18.0 DESIGN OF GEOGRID FOR PILED EMBANKMENT TO BS8006

18.1. INTRODUCTION

- 1) Refer to Section 8.3.3 (Pg. 104) of BS8006.
- 2) Use the Partial Factors in Table 27.
- 3) Check for both Ultimate Limit States (ULS) and Serviceability Limit States (SLS).
- 4) The maximum limit state tensile load, T_r per metre 'run' :
 - (i) Along the embankment to transfer the vertical embankment load onto pile caps, T_{rp} (Sec. 8.3.3.6)

$T_r = T_{rp}$

 Across the embankment is the sum of load to transfer the vertical embankment load onto pile caps, T_{rp} (Sec. 8.3.3.6) & T_{ds} to resist lateral sliding (Sec. 8.3.3.7)

$T_r = T_{rp} + T_{ds}$

(iii) Need to check $T_D/f_n \ge T_r$. T_D is the design strength (Sec. 5.3.3), f_n from Table 3. For most critical case, $f_n = 1.1$.

Two stages need to be checked, namely :

- (a) During Construction
- (b) Final (long term)
- (iv) In total there is minimum of 4 Nos. of T_r obtained for each stage :
 - (v) Along the Embankment, Ultimate Limit State T_r
 - (vi) Along the Embankment, Serviceability Limit State Tr
 - (vii) Across the Embankment, Ultimate Limit State T_r
 - (viii) Across the Embankment, Serviceability Limit State Tr

18.2. Ultimate Limit States (ULS) should check for following :

- 1) Pile Group Capacity (Section 8.3.3.4 + Fig 67a)
- 2) Pile Group Extent (Section 8.3.3.5 + Fig 67b)
- 3) Vertical load shedding onto pile caps (Section 8.3.3.6 + Fig 67c)
- 4) Lateral sliding stability of the fill (Section 8.3.3.7 + Fig 67d + Fig 71)
- 5) Overall stability of piled embankment (Fig 67e)

Note: For Ultimate Limit States (ULS) the suggested **strain** to be used to be based on Manufacturer's **strain at ultimate tensile strength** (e.g. Fortrac is about 12% as from Isochronous creep curves)

18.3. Serviceability Limit States (SLS) should check for following :

- 1) Excessive Stain in reinforcement (Fig 68a)
- 2) Settlement of Piled Foundation (Fig 68b)

18.4. Maximum allowable strain

Maximum allowable strain in reinforcement, e_{max} (Section 8.3.3.10) \Rightarrow to control differential settlement (Serviceability Limit State) :

DESIGN OF GEOGRID FOR PILED EMBANKMENT TO BS8006

- 1) The long term strain (due to creep) of reinforcement should be kept to minimum \Rightarrow A maximum creep strain of 2% over the design life should be allowed. **MORE CRITICAL**.
- 2) 6% is the practical upper limit (Serviceability Limit State)

(Note : can check for "mushroom" effects)

18.5. Polymeric Reinforcement

For the design of Polymeric Reinforcement (e.g. Fortrac), the following clause shall be followed :

- 1) Use Clause 5.3.3.3 (Pg 34) and Annex A (A.1.3)(Pg.142)
- 2) $T_D = T_{CR}/f_m$ or T_{CS}/f_m which ever is smaller :

T_D = Design Tensile Strength

- T_{CR} = Extrapolated tensile creep rupture strength at the end of the selected design life and at the maximum operational temperature. (Annex A).
 - The peak tensile creep rupture strength at the appropriate temperature (Cl. 5.3.3.3)
 - Generally to be used for Ultimate Limit State
 - Can use <u>1million hours strength</u> (e.g. for Fortrac use 60% of the Short Term Strength)
- T_{CS} = Extrapolated tensile load which gives rise to a creep strain, between the end of construction and the end of the design life, which does not exceed prescribed serviceability limit strains.
 - The average tensile strength based on creep strain considerations at the appropriate temperature.
 - Generally to be used for Serviceability Limit State
 - Based on <u>stress ratio in % of short-term strength</u> obtained from serviceability strain (e.g. 2% to 6% refer to Cl.8.3.3.10) (e.g. for Fortrac about 18% of the short term strength)

3) Generally f_m can be taken as 1.0

