<section-header><section-header><text>

CONTENTS

- INTRODUCTION
- SOIL PARAMETERS
- > NUMERICAL ANALYSES
- CASE HISTORIES
 - 3 Underground Stations for KVMRT
 - Circular Shaft for Launching of TBM
 - Hydraulic Failure @ Penang

CONCLUSIONS

Excavated depth 24.5m - 28.5m (6-level basement)

Retaining wall 1.2m thick diaph walls

FAILURES of DEEP EXCAVATION

FAILURES of DEEP EXCAVATION

SOIL PARAMETERS

Some important soil parameters related to retaining wall and suppor system design:

Shear strength parameters (s_u , ϕ ' &

□Soil permeability

□Soil stiffness

-				
Soil Type	Maximum small-strain shear mo G₀ (kPa)			
Soft clays	2,750 to 13,750			
Firm clays	6,900 to 34,500			
Silty sands	27,600 to 138,000			
Dense sands and gravels	69,000 to 345,000			
Typical values of maximum small-strain shear modulus				
G ₀ = 15,560 (N ₆₀) ^{0.68}				
$G_0 = 1,634(q_c)^{0.25}(\sigma'_{vo})^{0.375}$				
$\gamma_{0.7} = \frac{0.385}{4G_0} (2c(1 + \cos 2\emptyset) + \sigma'(1 + Ko) \sin 2\emptyset)$				

FINITE ELEMENT ANALYSIS

- Some important considerations in FEM:
 - □ Locations of the **boundaries of the proble**
 - Details of **mesh**
 - □ Modelling of **stages of construction**
 - □ Modelling of **interfaces**
 - Use of suitable constitutive soil model
 - Use of appropriate soil parameters, especi empirical parameters

CONSTITUTIVE SOIL MODE

- Various constitutive soil models, e.g. Me Coulomb, Cam Clay, Hardening Soil, Se Soil, etc.
 - Proper understanding and limitations of each model important!

MONITORING TRIGGER

GENERAL MONITORING TRIGGER LEVELS

FEATURE TO BE MONITORED	INSTRUMENT / PARAMETER TO BE MONITORED	ALERT	ACTION	ALAF
HERITAGE STRUCTURES/	BUILDING SETTLEMENT (mm)	5	8	10
BUILDINGS	DISTORTION ANGLE	1:1000	1:750	1:50
STRUCTURES/ BUILDINGS	BUILDING SETTLEMENT (mm)	7	12	15
ON DEEP FOUNDATION	DISTORTION ANGLE	1:750	1:500	1:25
STRUCTURES/ BUILDING	BUILDING SETTLEMENT (mm)	12	20	25
ON SHALLOW FOUNDATION	DISTORTION ANGLE	1:750	1:500	1:25
EXISTING BUILDING/ STRUCTURES	AIR OVERPRESSURE	100dBL	120dBL	1300
GROUNDWATER DRAWDOWN (NOT PIEZOMETRIC HEAD)	STANDPIPE/ PIEZOMETER STANDPIPE	1000mm WITH REFERENCE TO BASELINE READING	1500mm WITH REFERENCE TO BASELINE READING	2000mn REFER TO BA REA

NOTE: THE ABOVE VALUES ARE SUBJECT TO ADJUSTMENT AFTER COMPLETION OF BUILDING CONDITION SURVEY WOR

Berjaya Times Square

 Excavated depth 24.5m - 28.5m (6-level basement)
Retaining wall 1.2m thick diaphragm walls
Support system Prestressed Ground Anchors

CAVERN/CAVITY EXPOSED AFTER EXCAVATIO

BH GA117(US)		
	Subsoil	B
	Silty Sand	L
COCHRANE CSBH3 BH CA119(US) BH CA69(US) Cepth	5m	5
LÉGEND: C BOREHOLE OFTST LABUISS DIFIST LABUISS DIFIST LA	18 kN/m ³	2
CH 452 CH 4773 CH 6310 CH 6327 IU-30(H5) CH 6323 CH 6327 IU-30(H5) CH 6323 CH	2 - 4	
	-	(
	-	
Effective shear	c'= 1 kPa φ'= 29°	C'
	Ŧ	
Elastic	4000 -	
	12000	
	1.0E-5	
	m/s	

Secant P

M

Curtain & Base Grouting to seal the Limest GROUT EXISTING Karstic Features

GROUT TRAVELLING DOWN HOLE AND FILLING DISCONTINUITIES

Table 3. Holding pressure for fissure grouting.		
Depth (m)	Holding pressure (Bar)	
0 to 10	2 to 4	
10 to 20	6 to 8	
20 to 30	10 to 12	
30 to 40	14 to 16	
40 to 50	18 to 20	
>50	>22	

Note: Termination criteria shall be satisfied with flow rate less than 2 liters per minute or grout volume reaches 10m³ for every grouting zone in 5m depth.

Typical Curtain & Base Grouting Holes Lay

Exposed Vertical Rock Face of the Excavat

Circular TBM Launching Shaft

52

Design Based on Hoop Force

Critical hoop force in wall

Effective thickness of wall < *Allowable compressive stress of concrete*

where

Critical hoop force (kN per meter) = (Maximum lateral pressure) x (0.5 of circular shaft outer diameter)

Effective thickness (m)

= (structurally connected area of retaining wall) – (pile deviation and verticality at critical depth during installation)

Allowable compressive stress of concrete (kPa) = 0.25 of concrete design strength

Original Retaining Wall (Insufficient Depth)

Cracks of Houses

Settlement of Ground

HYDRAULIC FAILURE

Heaving due to artesian pressure

□Factor of safety – **1.0 to 1.2**

Smaller FOS sufficient as it did not consider shear strength or adhesion strength of the ground and retaining v

Video of Hydraulic Failure

ACKNOWLEDGEMENT

The input from the following team members for KVMRT and in this presentation are very much appreciate

- Ir. TAN Yean Chin
- Ir. CHOW Chee Meng
- Ir. KOO Kuan Seng
- TIONG Chiong Ngu
- Ir. Dr. GUE Chang Shin

