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ABSTRACT: Protective work such as underpinning and ground improvement are rou-
tinely used to reduce tunnelling induced impacts, ensuring safety and serviceability of
vulnerable existing building structures. This paper presents two case studies where the
construction of the new Klang Valley Mass Rapid Transit- Line 2 in Kuala Lumpur,
Malaysia, crosses very closely below the existing structures. The first case involves the
underpinning of a 5-storey building located above the proposed tunnel alignment with
some of its piles located within the tunnel horizon. Pile removal was designed to be
carried out while the building was occupied. In the second case study, the same tunnel
crosses beneath an existing reinforced concrete retention pond of a pumping station
where partial pile removal was required to allow unobstructed access for the TBM.
Despite the improved ground support from jet grouting, additional analyses were
required as the underpinning work changes the response of the reinforced concrete
structure.

1 INTRODUCTION

Construction of the Sungai Buloh-Serdang-Putrajaya (SSP) Klang Valley Mass Rapid Tran-
sit Line 2 (herein referred to as KVMRT2) in Kuala Lumpur, Malaysia began in the second
half of 2016 and is in progress at the time of writing this paper. Scheduled to be fully oper-
ational by year 2022, it will serve a total of 37 stations over an alignment of 52.2km. Within
this alignment, 13.5km of the alignment will be underground, connecting 11 underground
stations.
Following the success of the world’s first variable density tunnel boring machine (TBM) in

KVMRT Line 1 (Bäppler et al., 2001), the new Line 2 utilises the same TBMs for its twin
tunnel drives along the underground alignment. The 6.684m external diameter tunnel is made
up of seven 275mm thick G50 precast segmental concrete linings.
While the TBMs are capable of addressing a variety of soils and rock of various condi-

tions, tunneling through reinforced concrete piles is not advisable as the ductile rebars are
likely to bend instead of being crushed and cored through, potentially jamming the TBM
cutterhead.
One of the simplest ways to work around this issue is to design a tunnel alignment that does

not clash with foundations of high-rise buildings or structures with pile foundations. However,
in an urban environment, due to restrictions of land use or land acquisitions on top of any
other technical or financial requirements, there will be situations where it is unavoidable. In
these cases where buildings will remain in service throughout, underpinning and pile removal
of existing structures are necessary for TBM passage.
This paper presents two case studies for the underpinning and pile removal of existing struc-

tures. It aims to highlight some of the less obvious but equally critical considerations for each
specific site requirements.
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2 CASE STUDY 1- UNDERPINNING DESIGN OF 5-STOREY EDUCATION
QUARTER

2.1 Site background

The education quarter is a 5-storey reinforced concrete building with a ground floor car park
and 4-storey residential quarters for a government primary school, Sekolah Kebangsaan Jalan
Raja Muda. The KVMRT2 line consists of twin tunnels (Northbound and Southbound tun-
nels), that are parallel to each other at this location. The Southbound tunnel cuts under part
of the existing education quarter building, indicating potential obstructions from the existing
foundations to the tunnel construction works as shown in Figure 1.
Due to unavailability of foundation information of the building, investigation work, includ-

ing trial pits, boreholes and parallel seismic tests were carried out. The trial pits revealed that
the building is supported by 300mm square reinforced concrete (RC) piles. Based on parallel
seismic tests conducted on two piles at different columns, the estimated pile lengths were
found to be 24.5m and 32m respectively. The depth of tunnel boring machine (TBM) cutter-
head is approximately 9m to 16m below ground level (Crown and invert of TBM extrados).
As such, all the piles within the TBM extrados need to be removed. Since the building itself it
currently occupied and will remain as such throughout tunnel construction, foundation under-
pinning work is required to protect the building, and ensure safety and long-term serviceabil-
ity of the building.
The pile removal zone considers a TBM cutter head diameter of 6.684m, including uncertain-

ties of 100mm TBM driving tolerance and pile verticality of 1 in 75 from true vertical position
in the direction of the tunnel. All piles within the aforementioned zone will be removed and no
underpinning pile can be carried out in this region. Figure 2 shows the photo of the affected
columns. A total number of 4 piles (one for each column) have been identified for removal.

2.2 Geological conditions

The building is underlain by Kuala Lumpur Limestone formation with overburden soil typic-
ally consisting of mainly silty/gravelly SAND or sandy SILT of low SPT-N values (generally
less than SPT-N 20). Figure 3 shows a typical geologic section. The subsurface investigation
results show that the bedrock is generally encountered at 34m to 45m below ground level
which is approximately 18m to 29m below invert level of KVMRT2 tunnel. Based on the near-
est borehole information, the groundwater level is about 4.0m below ground level.

Figure 1. Plan view of affected columns in relation to the southbound tunnel.
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2.3 Loading assumptions

Due to the absence of loading information for the existing building, the column loadings
were estimated based on simple tributary area method. The loads derived by the authors
were based on an assumed surcharge load of 15kPa per storey and 10kPa for roof loading.
These estimated loads were independently assessed by two other consultants and as a means
of assessing the final adopted values, the maximum estimated loading obtained from three
parties on each column was conservatively chosen to represent the column loading for
analysis.

2.4 Foundation underpinning scheme and design considerations

The concept of the proposed foundation underpinning scheme consists of a transfer slab
which distributes the column loads to new micropiles beyond the no-pile zone. This meant
that the transfer slab had to be designed for a wide effective span of 9.3m, with a thickness of
1.0 to 1.5m. The micropiles are 300mm diameter with design rock socket length of 2.5m. Due

Figure 2. Typical cross section with borelog showing subsoil SPT-N profile.

Figure 3. Photo of affected columns.
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to karstic characteristics of the limestone formation, the bedrock level of the site is uneven,
causing the installed pile lengths to vary from 28.5m to 50.1m.
To minimize the impact of the loading of the piles to the KVMRT2 tunnel, the micropiles

are de-bonded up to 2m above tunnel invert level using bituminous membrane sheet (applied
with grease) attached to the permanent casing. In addition, the permanent casing also serves
as protection to the micropiles from the pile removal (i.e. coring works)as well as tunneling
works.
Overlapped grouted columns were adopted as a temporary earth retaining system to facili-

tate the excavation and construction of transfer slab. It deserves to be highlighted that pile
removal wouldonly be carried out after the load transfer structure is put in place. The method
of pile removal will be further discussed in the subsequent section.
It is important to consider the reaction of working piles and transfer slab at different stages

of construction to ensure adequacy of the underpinning system. This includes but is not
limited to the following checks:

i. Impact of coring of existing pile (pile removal method) on newly constructed micropiles
and adjacent existing RC piles.

ii. Expected pile head movement and transfer slab deflections post load application; perman-
ent condition.

iii. Building impact assessment due to tunneling (Impact of tunneling on newly installed
micropiles)

The new micropiles are expected to settle after mobilization of building loads to the
pile and again during tunneling due to volume loss. As such, pre-loading on the newly
installed micropiles is necessary to control the movements and differential settlements of
the building.
These micropiles will be preloaded to the combined self-weight of the transfer slab, column

load and weight of backfill above the transfer slab. This is achieved through the use of reac-
tion frames where they are anchored to the transfer slab, providing the required reaction to
transfer loads to the micropiles via hydraulic jack (see Figure 4). Upon reaching the targeted
preload, the gap between the micropile and transfer slab will be filled with non-shrink grout
to complete the load transfer process.

2.5 Methods of pile removal

Two feasible options to remove existing piles were considered. Option 1 was to remove
the pile manually by creating an access via hand-dug caisson shaft with horizontal
mined adit, while Option 2 was to core the piles in inclined direction from ground sur-
face. In order to avoid prolonging the planned tunneling schedule, the tunnel interven-
tion method to remove the pile from TBM cutterhead during tunneling works was not
taken into consideration.

Figure 4. Pre-loading jack configuration.
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2.5.1 Option 1: Manual cutting of pile via caisson vertical shaft and horizontal mined adit
Given that the length of the pile removal is approximately the diameter of TBM cutter head, a
single adit would be excessively large and not cost-effective. Therefore, two levels of horizon-
tal horse-shoe shaped mined adit with localized deepened excavation; below the pile location,
has been proposed as shown in Figure 5.
In view of high groundwater table above tunnel horizon, pre-construction ground treat-

ment (i.e. jet grout block) is required to ensure stability and dry condition inside the shaft
and adits during excavation. Once grouted block has gained strength, the vertical shaft will
be excavated first, followed by mining of horizontal adit towards the pile before pile cutting
and removal. The horizontal mining would start from the lowest adit which is subsequently
backfilled upon completion of the interim pile removal before repeating the process for the
upper adit.

Figure 5. Caisson vertical shaft and horizontal mined adit for pile removal.

Figure 6. Pile removal from ground surface using coring rig (Left: Layout plan; Right: Typical section).
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Based on KVMRT Line 1 experience, this option had been successfully implemented by
local contractors as described in Khoo et al. (2015). The working space required for this
option is small and therefore feasible for a site with headroom constraint. However, the draw-
back of Option 1 is the slow excavation progress. Considering the target was to remove all
obstacle piles prior to tunnel arrival within tight a schedule, this option was not adopted.

2.5.2 Option 2: Inclined coring of piles
As the affected piles are located at the edge of the building, there is sufficient open space
along-side the building to make use of a drilling rig for pile removal. The core diameter is
350mm (slightly larger than the existing RC square pile size of 300mm) and angle of coring
ranges from 13° to 16° from vertical (see Figure 6).
In order to ensure stability of drilled hole during coring work, ground improvement by

means of jet grouting block was carried out for an extent of 600mm surrounding the edge of
the inclined drilled hole. Once the grouted block has gained strength, coring is to be carried
out at the planned direction and distance. The void left by the coring will be backfilled with
cement? grout.
The next coring can only begin once the minimum grout strength of 1MPa is achieved to

ensure stability of adjacent drilled hole. Minor adjustments of coring direction on site may be
required subject to coring results. The acceptance of the pile removal will be subject to verifi-
cation of the extracted material.
It should be noted at that unlike Option 1, the pile removal from Option 2 may not be as

complete or thorough, even within the tunnel horizon. However, this is considered manage-
able for the tunnel operation as long as the majority of the pile material (especially the pile
reinforcement), can be removed; preventing jamming of TBM’s system. This option has been
adopted as it offers a much shorter pile removal duration as compared to Option 1.

3 CASE STUDY 2- DATO’ KERAMAT PUMPING STATION

3.1 Site background

Constructed in 2001, the Dato’ Keramat pumping station is a manmade reinforced concrete
retention pond located at Kampung Dato’ Keramat, next to Klang River. As part of a wider
flood mitigation scheme initiated by the Department of Drainage and Irrigation Malaysia
(JPS), the 1400 m2 wide two-tiered retention pond was designed to retain an operation volume
of approximately 3700 m3 of water, diverted from the adjacent Klang river.

The retention pond itself is supported by 200 mm square RC piles in a grid pattern with 2 m
centre-to-centre spacing. An elevated pump house control room is situated on the south-west
corner of the retention pond. No as-built information was made available. Therefore, it was
expected for the actual foundation installed on-site to differ slightly from the construction
drawings. Based on the construction drawings, pile lengths of 18 m are expected.
Both north and southbound tunnels of KVMRT2 will cross the retention pond along its

width in a stacked alignment as shown in Figures 7 and 8. The axis depth for the shallower
southbound tunnel is approximately 16.5m below ground level(mbgl) where it has a gentle
gradient which was higher on the north side of the retention pond while the deeper north-
bound tunnel is relatively level with an axis depth of approximately 28 mbgl. Since the piles
are within the southbound tunnel’s horizon, pile removal is required for affected areas (i.e.
along the tunnel alignment with a width of 3m to each side of the tunnel extrados). The
adopted pile removal method consists of loosening the soil surrounding the pile with a steel
casing (internal diameter of 330mm) before lifting it out from its position.

3.2 Subsoil condition

The pump house is situated on limestone formation where the underlying ground is of alluvial
soil. This consists of silty/gravelly SAND and CLAY. Prediction of rock head levels in
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limestone formation is generally very difficult due to its karstic features, but the role it plays
in this case study is less important given that the rock head level recorded by nearby boreholes
are much deeper than the areas of concern. Groundwater level was relatively high with an
adopted design level of 2 mbgl. The interpreted cross section A-A of the analysis is shown in
Figure 8 below.

3.3 Design considerations and proposed solution

Ground improvement via jet grouting was proposed to support the slab post pile
removal. In the initial stages, it was only intended for the jet grout block (JGB) to
extend 3m from the southbound tunnel extrados. Subsequently, it was decided to utilize
the scheme to serve as an intervention block for both tunnels; facilitating the mainten-
ance of the TBM. Thus, the JGB at the central portion (Zone A) under the retention
pond was extended further to encompass the deeper northbound tunnels (see Figure 8).
Zone B as indicated in Figure 7 represents the area outside of the intervention block
where JGB extends 3m below the invert of the southbound tunnel. Piles outside of these

Figure 7. Layout of Dato’ Keramat Pumping Station.

Figure 8. Section A-A of Dato’ Keramat Pumping Station.
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zones remain in place. Note that the construction drawing records that each pile has a
working load of 300kN.
Tunnelling within the improved ground is beneficial in terms of the stress reductions on

the tunnel linings at a given volume. This is because the JGB is designed to be self-support-
ing, allowing forces to arch over the circular tunnels. JGB is expected to achieve an uncon-
fined strength of 1 MPa in 28 days with stiffness of 150MPa as well as a permeability within
the region of 1 x 10-7 m/s. Along with the increased stiffness and strength of the JGB, magni-
tudes of soil movements toward the tunnels would similarly be less, reducing surface
settlements.
While the above summarizes the pros of having ground improvement, the improved stiff-

ness introduces an additional problem. The retention pond will resume operation upon
reinstatement of the base slab, after pile removal. The base slab is therefore expected to take
full water loading. Even though the settlements directly above JGB will be very small due to
the its high stiffness, the sides which are seated on the existing loose/soft ground will deform
much more under the same area load, creating differential settlement. This is exacerbated with
the high stiffness of the piles immediately adjacent to JGB. Even though the existing slab
within zones A and B will be demolished, the adequacy of its initially design steel reinforce-
ments would need to be reassessed to cater for this hogging moment. A two-dimensional finite
element analysis (FEA) was carried out using a commercial geotechnical FEA software, Plaxis
2D in order to evaluate the potential slab and pile settlement that may occur. A similar ana-
lysis was carried out to ascertain the slab settlement at Zone B. Structural forces for the base
slab were not adopted directly from the FEA given the unique shape of the retention point
and the skewed angle that the tunnel passes through it.
Soil spring stiffness was then computed by dividing the allowable bearing capacity of JGB

with the settlements obtained from Plaxis. Similarly, the spring stiffness of the pile is taken as
the working load divided by pile settlement. This was then modelled in a dedicated structural
FEA software, SAFE 12. This allowed for a more realistic approach whereby local stiffening
effects (e.g. corner of slab and wall of retention pond) can be accounted for.
A full model of the retention pond was not necessary as the area of concern lies is relatively

small. The authors note that the response of the slab towards the extreme sides of the reten-
tion pond were less representative but the model was sufficiently wide to capture the slab
response over Zones A and B.
In line with expectations, the edges of JGB experienced large hogging moments (refer to

Figure 9). Across zone A, the results showed negligible sagging moment while in zones B, due
to a lower stiffness from the shorter length of JGB, the result indicated a sagging moment at
midspan and hogging moments towards the sides; similar to zone A.
The maximum hogging moment of 117.7 kNm/m was recorded in near the south border of

zones A and B. This has exceeded the allowable moment capacity of the existing slab based on
the existing reinforcement design at 95kNm/m. At these locations, additional reinforcement
was required during reinstatement.
The adopted bearing capacity of JGB was taken as 300 kPa. This was based on previous

local experience on similar ground conditions. Nonetheless, it is important to highlight that
the actual bearing capacity could vary on site, owing soil variability as well as uncertainties in
workmanship, this is in-line with the load cases considered for piled raft foundation (Tan
et al., 2004).
To cater for this, a sensitivity study was carried out by varying the soil stiffness. This was

essentially achieved by increasing or decreasing bearing capacity by a prescribed amount vary-
ing from 100 kPa to 400 kPa. The respective maximum bending moment is summarized in the
table below.
Due to the high spring stiffness of the piles at the sides of JGB, a high bearing capacity or

stiffness of JGB would result in a smaller contrast in stiffness. This would eventually yield
smaller differential displacements and thus hogging moments. It can be observed from Table 1
that the results follow this trend.
Fluctuations for maximum sagging moments on the other hand were relatively small at less

than 7% across the range of bearing capacities. This is due to the fact that the maximum
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sagging moment generally occurred at midspan of JGB which was less affected by the varying
relative stiffness of the piles located at a distance.
Given the affected locations were relatively small, the final slab reinforcement design was

based on the worst-case scenario with a bearing capacity of 100kPa. The authors believe that
it was justified to take a conservative approach to the design to account for the uncertainties
at a relatively small construction cost.

4 CONCLUSIONS

This paper has presented two case studies where the existing structures were required to be
underpinned for pile removal to allow passage for the TBM. In the first case study, various con-
siderations were given to the underpinning and pile removal techniques as the 5-storey residential
building remained occupied throughout the construction. The second case study discussed the
double-edged effect of ground improvement as an underpinning solution where the improved
ground stiffness imposes additional hogging moments on the RC slabs of the pumping station.
It is hoped that this paper will help in highlighting the importance of careful deliberation,

particularly for less obvious secondary effects during the designing process of protective works
due to tunnelling. It is important to note that the aforementioned protective works are still on-
going at the time of writing this paper, therefore, the possibility of minor field revisions remain.

Figure 9. Results of bending moment analyses for the RC slab (left) with sketch of bending moment
diagram illustrating the effects of the stiffen ground response with jet grouted block (right).

Table 1. Summary of maximum bending moments from sensitivity analyses.

JGB Bearing
Capacity
(kPa)

Max. Hogging
Moment
(kNm/m)

Max. Sagging
Moment
(kNm/m)

100 147.9 -146.9
150 107.9 -141.6
200 98.4 -141.7
300 86.5 -146.4
400 82.4 -151.9
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