SEAGS 50<sup>th</sup> Anniversary Symposium Proceedings: September 14-15,2017

Common Blind Spots in Ground Investigation, Design, Construction, Performance Monitoring and Feedbacks in Geotechnical Engineering

Ir. Liew Shaw Shong

G&P Geotechnics Sdn Bhd, Kuala Lumpur, Malaysia



## Mission Statement

- Site Investigation
  - Planning, Execution & Interpretation
- Forensic Investigation
  - Stability of Piled Supported Retaining Wall
  - Embankment Distress (Strain Incompatibility)
  - Abutment Distress due to Piled Embankment Failure
  - Unreliable Facing Capacity of Soil Nailed Slope
  - Illusive End Bearing Pile Capacity
  - Non-linearity Elasto-Plastic & Hysteresis Phenomena of Pile-Soil Interaction Performance

## Site Investigation

- List CEO and key management by name.
- Include previous accomplishments to show that these are people with a record of success.
- Summarize number of years of experience in this field.





## Lessons Learnt on Stability of a Piled Retaining Wall in Weak Soils

Ir. Liew Shaw-Shong





Content

- Distress conditions of wall
- Desk study & subsurface conditions
- Forensic investigation (Geotechnical & Structural assessments)
- Probable Causations
- Remedial Solution
- Conclusion

## First SI : Jan 2005 (Within project site)

Second SI : May 2005 (at wall area)

**Chronological** events

- Wall Distress : Feb 2006 (After prolonged rain)
- Forensic Investigation : Feb to Mar 2006











RL48m

**Cross Section of Wall** 





#### - Weephole at RL45m (Water staining)

/Weephole at RL42.5m

Weephole Drains













Forensic Boreholes







RL48m









6 PIT : Discontinuity detected at depths from 1m to 4m below pile top

# Pile Structural Assessments Rankine Pressure

- Brom's Lateral Pile Capacity:
  - Fixed Head : 32kN/pile (Likely the case)
  - Free Head : 20kN/pile
- Ultimate lateral pile capacity reached when RL42.5m<GWT<RL45m</p>

## Potential perched water regime in natural valley terrain after raining

**Probable Causes of Wall Distress** 

- Rise of groundwater increases the lateral force on wall
- Inadequate lateral pile resistance
- Reduction of effective soil strength due to reduction of vertical stress as wall loading carried by piles



## Soil Replacement for upper weak soil Overcut existing piles below new wall base

- Construct stabilising berm in front of new wall
- Provide subsoil drainage behind wall to control rise of groundwater seepage



## Potential perched water regime in natural valley terrain after raining

- Rise of groundwater (inefficient sub-terrain drainage) increases the lateral force on wall
- Inadequate lateral pile resistance

Conclusion

- Reduction of effective soil strength due to reduction of vertical stress as wall loading carried by piles
- Slender vertical piles not suitable for supporting wall on weak & compressible soils (Poor lateral resistance)
- Remedial works : Soil Replacement + Subsoil drainage + Stabilising berm
- Solution : Raked piles in combination of vertical piles (Serviceability limit state)

Role of Extendible Basal Reinforcement for Embankment Construction Over Soft Soils

Introduction

- Problem Statements & Distress
- Back Analysis
- Discussions
- Conclusions
- Recommendations

## Introduction

- Embankment → Raised fill platform with side slopes to support structure and infrastructure developments.
- Stage construction + additional reinforcement → Ensure acceptable side slope stability
- Basal reinforcement 
   To minimise spreading failure of compacted embankment fill over weak supporting subsoils

## **Basal Reinforcement**

- Shall be designed in accordance with BS8006.
- Consideration → Strain compatibility between embankment fill and basal reinforcement system.
- Tensile strain in basal reinforcement shall be controlled to avoid cracking in embankment fill.

## **Basal Reinforcement**

- If the embankment is strained to excessive tensile crack, the embankment fill material strength is doubtful.
- Thus, case study of an instrumented embankment construction with extendible basal reinforcement have been used.
- This may call for a review of the permissible strain of extendible basal reinforcement with brittle compacted fill.

## Problem Statement & Distresses

#### Problem Statements

- Embankment Fill over Soft Deposits
- PVD with Staged Construction
- Basal Reinforcement for Temporary Embankment Stability
- **BS8006**
- Strain Incompatibility

#### Distresses

Longitudinal flexural cracks on embankment surface





Alligator cracks observed on site.



Im surcharge removal after distresses observed

Cracks found after 1m surcharge removal.

Excavation on cracks found after I m surcharge removal
## Instrumentation Layout



## Instrumentation Results

Fill Thickness and Settlement of Embankment with time monitoring by SG580



#### Instrumentation Results



#### Inclinometer I6 Monitoring Results



Back analysis to match lateral deformation and settlement profiles.

Two cases were modelled for back analysis:-

Case I: Ultimate strength (600kN/m) mobilized at 10% Case 2: Ultimate strength (140kN/m) mobilized at 1%

#### Comparison of Back Analysed Settlement Trend With Actual Measurement (Case I)



Comparison of Lateral Displacement Profile (Case I)



## Summary of Back Analyses

| Stage      | Tensile<br>Stiffness | Mobilised Tensile Load<br>/ Tensile Strain | Maximum Lateral<br>Deflection at<br>Edge of<br>Embankment<br>(mm) |
|------------|----------------------|--------------------------------------------|-------------------------------------------------------------------|
| SI         | Case I               | 40.6kN/m / 0.68%                           | 267                                                               |
|            | Case 2               | 65.9kN/m / 0.47%                           | (173)                                                             |
| RI         | Case I               | 41.8kN/m / 0.70%                           | 295                                                               |
|            | Case 2               | 67.4kN/m / 0.48%                           | (180)                                                             |
| <b>S</b> 2 | Case I               | 64.6kN/m / 1.08%                           | 400                                                               |
|            | Case 2               | 106.8kN/m / 0.76%                          | (253)                                                             |
| <b>R</b> 2 | Case I               | 67.4kN/m / 1.12%                           | 425                                                               |
|            | Case 2               | 110.3kN/m / 0. <b>79</b> %                 | (265)                                                             |

#### Probable Mechanism



#### Discussion

- Strain incompatibility between basal reinforcement and embankment fill could potentially cause embankment cracking.
- Average tensile strain of underlying weak subsoils is more than max. tensile strain in basal reinforcement.
- Results of back-analysis → indicated mobilised tensile strength and strain < conventional assumed values for LEA stability analysis.

## Conclusion

- Longitudinal cracks 
   Outcome of plastic straining
   of upper weak alluvium within the underlying subsoil
   below the embankment loading.
- Review on current design practice by arbitrarily adopting unrealistic high mobilised strength is needed.
- Wishful high tensile strain assumed in LEA can lead to misrepresentation on safety margin of embankment.

## Recommendations

- Counterweight berm was proposed to solve the strain incompatibility between basal reinforcement and the subsoil.
- Instrument on basal reinforcement to reveal the distribution profile and performance of installed basal reinforcement.

#### Case 2: Case study on Piled Supported Embankment Failure



#### Site Conditions

Embankment (maximum 5.4m high) with Piles & Ground Improvements

• Ch3328 to Ch3375 (Top 10m soft Clay,  $S_u = 10 \sim 15$ kPa)

Distressed Abutment

Abutment A @ Ch3266 (Top 15m soft Clay,  $S_u = 13 \sim 18$ kPa)

Abutment B @ Ch3328 (Top 9m soft Clay, S<sub>u</sub> = 7~12kPa)



## Findings from Site Inspection

Piles & slab of piled embankment suffered structural distress

- Settlement of 0.4 to 1.0m beneath piled embankment due to consolidation of subsoils under the working filled platform.
- Bearing distortions confirmed : Bridge deck moving from Abutment B towards Abutment A

## Piled Embankment 30m from Abutment B shown structural distress



#### Piles of Piled Embankment has shown flexural cracks



#### Damaged piled embankment slab damaged & 100mm gap at slab joint



#### Settlement of 0.4 to 1.0m under the Piled Embankment



#### Bearing distortion at Pier P2



#### Bearing distortion at Pier PI





- **P**<sub>1</sub>: Action/Reaction Force between Piled Embankment Slab & Abutment
- **P**<sub>2</sub>: Ultimate Lateral Pile Group Capacity of Embankment Piles
- P<sub>3</sub>: Mobilised Thrust on Stability Soil Mass with Corresponding FOS



FOS

- Settlement Markers (LDC): 28 May -31 Jul 2005
- Displacement Markers (by LDC) : 02 Mar 18 Jun 2006
- Displacement Markers (by G&P) : 25 Apr 7 May 2007



## **Investigation Findings**

#### Embankment (5.4m high)

- Ch3375 : FOS  $\cong$  1.0 at Embankment on Ground Treatments
- Causation : Inadequate FOS => Embankment instability exerting lateral stress to Piled Embankment on free standing piles due to subsoil consolidation

#### Distressed Abutment

- Abutment B : Laterally pushed by unstable embankment behind piled embankment
- Abutment A & Two piers : Affected by lateral thrust from Abutment B (No observable distresses at the abutment pile foundation after exposure of piles)

## Abutment Remedial Design

#### Abutment Distress (Ch3266 to Ch3328)

• Remedial proposal :



## Conclusions

- Weak post-treatment soil strength unable to support embankment
- Creep movement of weak subsoil beneath embankment coupled with embankment instability due to low FOS
- Further consolidation of weak overburden soil, the lateral resistance of piled embankment in free standing pile conditions is weaken
- Monitored bridge displacement confirmed pattern of lateral movement of entire bridge & piled embankment
- Structural damage on embankment piles was expected as structural threshold has reached
- Use of residual strength is needed for rectifying failed embankment

- Construct new embankment slab at least 1m below the failed slab to prevent further consolidation settlement
- Extend piled embankment for embankment fill higher than 2m & provide isolation gap at the slab/abutment interfaces
- Use of higher strength RC pile for embankment piles
- Use of geotextile reinforcement to isolate embankment fill from both abutments to reduce direct lateral earth pressure on abutments

## Unreliable Facing Capacity of Soil Nailed Slope

- With intention of minimized earthwork cutting forming any platform, soil nailed slope profile is normally steep
- Facing capacity has remarkable effect on Internal Stability of steep soil nailed slope
- Volumetric swelling & shrinkage of soils with moisture variation are realistic observation
- Moisture depletion after covering with shotcrete surface results in volumetric shrinkage of slope soil face leaving air gap with separation of contact with shotcrete
- Mobilisation of face capacity in uncontacted slope surface is unrealistic, thus giving incorrect safety margin of slope stability

## Volumetric Shrinkage of Exposed Soil



# Gap below Shotcrete Surface with Depleting Moisture





Case Study 1 : Reduced Empty Pre-bored Jack-in Pile Capacity in Meta-Sedimentary Formation

- Subsurface Information
- Contractually Scheduled MLT Results
- Additional MLT Results
- Investigation Findings
- Conclusions & Recommendations

#### **Overview Foundation System**

- 400mm RC square pile
- Pre-boring was deployed to

   Overcome intermittent hard layer
   Avoid shallow pile penetration
- Jack-in pile installed inside pre-bored hole

#### Pre-bored Hole Diameter

![](_page_69_Figure_1.jpeg)

#### Void in Pre-bored Hole Annulus

![](_page_70_Picture_1.jpeg)

#### Collapsed Debris in Pre-bored Hole Annulus

![](_page_71_Picture_1.jpeg)
## Actual Scenario of Installed Piles



| Maintained<br>Load Test<br>(MLT) | Pre-bored<br>Diameter<br>(mm) | Pile<br>Penetration<br>below Piling<br>Platform (m) | Max. Jack-in<br>Load at<br>Termination<br>(kN) | Achieved<br>Maximum<br>Test Load<br>(kN) | Pile Top Settlement     |                                 |
|----------------------------------|-------------------------------|-----------------------------------------------------|------------------------------------------------|------------------------------------------|-------------------------|---------------------------------|
|                                  |                               |                                                     |                                                |                                          | At Working<br>Load (mm) | At Max.<br>Test<br>Load<br>(mm) |
| MLT 1                            | 600                           | 9.40                                                | 2160                                           | 2220<br>(1.71xWL)                        | 14.0                    | 46.00                           |
| MLT 2                            | 500                           | 9.30                                                | 2600                                           | 2220<br>(1.71xWL)                        | 23.50                   | 42.00                           |
| MLT 3                            | 550                           | 12.50                                               | 2860                                           | 2600<br>(2.00xWL)                        | 5.80                    | 21.80                           |
| MLT 4                            | 550                           | 9.50                                                | 2860                                           | 1406<br>(1.50xWL)                        | 16.50                   | 24.50                           |
| MLT 5                            | 550                           | 13.50                                               | 2860                                           | 1950<br>(1.50xWL)                        | 8.50                    | 13.00                           |

## Jack-in Pile Termination Criteria

- All piles were jacked to 2.2 times pile working load
- Settlement < 5mm during 30 seconds holding period for 2 consecutive times

## BUT

- Max Test Load < Jack-in Load</li>
- Non-conforming Piles Settlement Criteria

## **Boreholes Information**



## Photos of Exposed Subsoils



# Contractually Scheduled MLT Results













# Additional MLT Results

## Additional MLT

- 3 nos additional MLT at various penetration below prebored base:
- MLT6 0.5m below pre-bored base
- MLT7 1.5m below pre-bored base
- MLT8 2.0m below pre-bored base









| MLT   | Pre-bored<br>Diameter<br>(mm) | Pile<br>Penetration<br>below Piling<br>Platform (m) | Max. Jack-in<br>Load at<br>Termination<br>(kN) | Achieved<br>Maximum<br>Test Load<br>(kN) | Pile Top Settlement     |                                 |
|-------|-------------------------------|-----------------------------------------------------|------------------------------------------------|------------------------------------------|-------------------------|---------------------------------|
|       |                               |                                                     |                                                |                                          | At Working<br>Load (mm) | At Max.<br>Test<br>Load<br>(mm) |
| MLT 1 | 600                           | 9.40                                                | 2160                                           | 2220<br>(1.71xWL)                        | 14.0                    | 46.00                           |
| MLT 2 | 500                           | 9.30                                                | 2600                                           | 2220<br>(1.71xWL)                        | 23.50                   | 42.00                           |
| MLT 3 | 550                           | 12.50                                               | 2860                                           | 2600<br>(2.00xWL)                        | 5.80                    | 21.80                           |
| MLT 4 | 550                           | 9.50                                                | 2860                                           | 1406<br>(1.50xWL)                        | 16.50                   | 24.50                           |
| MLT 5 | 550                           | 13.50                                               | 2860                                           | 1950<br>(1.50xWL)                        | 8.50                    | 13.00                           |
| MLT 6 | 550                           | 9.50                                                | 2860                                           | 1950<br>(1.50xWL)                        | 15.08                   | 42.38                           |
| MLT 7 | 550                           | 10.50                                               | 2860                                           | 2400<br>(1.85xWL)                        | 11.29                   | 41.93                           |
| MLT 8 | 550                           | 11.00                                               | 2860                                           | 2600<br>(2.00xWL)                        | 10.30                   | 50.35                           |



## Analogy of Footing



### Bearing Improvement with Toe Confinement



## Conclusions & Recommendations

- Pile performance improved with longer pile penetration below pre-bored base
- Existence of pile toe softening due to relaxation of pile tip founding material
- Sufficient pile penetration below prebored base is important
- Recommend to seal the pre-bored hole with grout

CRapid gile installation in incompressible soft soil induces placement

- Vertical heave in shallow depth (relatively less confinement from weight of overburden soils)
- Lateral displacement in deeper depth (with soil confinement)

#### Consequences :

- Up-heaving soil movement causes tensile stress on pile & toe lift up during driving & downdrag after pore presure dissipation
- Lateral soil displacement causes flexural stress on pile & pile deviation
- Excessive combined tensile and flexural stresses lead to pile joint dislodgement
- Excessive foundation settlement in post construction (pile toe uplifting & downdrag settlement)

### Pile Joint Dislodgement

- Pile joints could be dislodged due to excessive flexural and tensile stresses induced by ground heave and radial soil displacement
- Detectable using High Strain Dynamic Pile Test (HSDPT)

#### Mechanism of Pile Heave & Soil Displacement



Monitoring of pile top settlement during the HSDPT re-strike tests is summarised as below:

| Cumulative Pile Top<br>Settlement (mm) | Pile C | Pile A | Pile B | Pile D | Pile E |
|----------------------------------------|--------|--------|--------|--------|--------|
| Upon resting 7-ton hammer on pile top  | 80     | 98     | 125    | 103    | 92     |
| At the end of Restriking<br>Test       | 275    | 399    | 497    | 186    | 182    |

#### Pile B

Initial Blow



#### Pile B

Blow No. 4



#### Pile B

Blow No. 17



- Pile B
- End of Blow

Minor velocity reflections were observable at first and second pile joints







#### Summary

 Ground heave & radial soil displacement due to rapid installation of displacement pile in soft incompressible soft clay can pose serious integrity problem on pile foundation.

#### Solutions :

- Use larger pile spacing & reduce rate of clustered pile installation for adequate time for dissipation of excess pore pressure
- Simultaneous pile installation at mirror pile location from centre outwards to minimise net lateral displacement, but this improves nothing on ground heave
- Stronger pile structural strength & joint to withstand tensile & flexural stresses
- Staggered pile installation sequence or install piles at alternate locations
- Restrike all piles with HSDPT to detect pile integrity if ground or soil heave is observed.

# **Opportunities**

- Identify problems and opportunities.
  - State consumer problems, and define the nature of product/service opportunities that are created by those problems.

# Business Concept

• Summarize the key technology, concept, or strategy on which your business is based.
# Competition

- Summarize the competition.
- Outline your company's competitive advantage.

# Goals and Objectives

- List five-year goals.
- State specific, measurable objectives for achieving your five-year goals.
  - List market-share objectives.
  - List revenue/profitability objectives.

# **Financial Plan**

- Outline a high-level financial plan that defines your financial model and pricing assumptions.
  - This plan should include expected annual sales and profits for the next three years.
  - Use several slides to cover this material appropriately.

### **Resource Requirements**

- List requirements for the following resources:
  - Personnel
  - Technology
  - Finances
  - Distribution
  - Promotion
  - Products
  - Services

### **Risks and Rewards**

- Summarize the risks of the proposed project and how they will be addressed.
- Estimate expected rewards, particularly if you are seeking funding.

### Key Issues

- Near term
  - Identify key decisions and issues that need immediate or near-term resolution.
  - State consequences of decision postponement.
- Long term
  - Identify issues needing long-term resolution.
  - State consequences of decision postponement.
- If you are seeking funding, be specific about any issues that require financial resources for resolution.